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Linear sinusoidal phase-shifting method resistant to
non-sinusoidal phase error
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Non-sinusoidal phase error is common in structured light three-dimensional (3D) shape measurement sys-
tem, thus we perform theoretical and experimental analyses of such error. The number of non-sinusoidal
waveform errors in a 2π phase period is the same as the number of steps of the phase-shifting algorithm; no
errors occur within the one-phase period. Based on our findings, a new structured light method, the linear
sinusoidal phase-shifting method (LSPS), that is resistant to non-sinusoidal phase error is proposed. Ex-
periments show that the non-sinusoidal waveform error is reduced to an almost negligible level (0.001 rad)
using the proposed LSPS.
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Optical non-contact three-dimensional (3D) shape mea-
surement techniques have been developed to obtain 3D
contours. With the recent advancement in digital display
technology, 3D shape measurement based on digital pro-
jection units has been rapidly expanding[1−2]. However,
the challenge remains to be in area of developing a sys-
tem with an off-the-shelf projector, such as liquid crys-
tal display (LCD) and digital mirror device (DMD), for
high-quality 3D shape measurement. One of the major
issues is the nonlinear response of the projection engines
of projectors[1−10].

Projector gamma calibration is usually needed to per-
form high-quality 3D shape measurement using a digital
fringe projection and phase-shifting method[2−10]. This is
because the commonly used commercial video projector
is a nonlinear device purposely designed to compensate
for human vision[7]. A variety of techniques have been
developed for nonlinear phase errors[2−12]. These include
the two-step triangular-pattern phase-shifting algorithm
and the error compensation method[5−6], which can re-
duce periodic measurement errors due to gamma nonlin-
earity as well as projector and camera defocus. In this
letter, the detailed mathematical model for sinusoidal
phase shifting was developed to predict the effects of
non-unitary gamma on phase-measuring profilometry[3].
Zhang et al. developed a compensation method that
needs to calibrate an error look-up table (LUT) and is
based on the assumption of periodic phase error[9−10]. In
general, the abovementioned methods need an additional
compensatory step to reduce phase error. A new method
with defocusing binary structured patterns can be used
to eliminate nonlinear gamma[7]; however, controlling
the proper defocusing degree to achieve high accuracy
is difficult using this method[8]. Guo et al. proposed a
gamma correction method using a simple one-parameter
gamma function technique by statistically analyzing the
fringe images[11]. These techniques significantly reduce
the phase error caused by nonlinear gamma. Neverthe-
less, these compensation methods still have residual error
value that cannot be ignored in accurate measurement.
In addition, the actual gamma of the projector is very

complicated and is not the only factor that causes non-
sinusoidal waveforms. Our experiments show that the
nonlinear gamma of the projector changes over pixels,
and must be compensated one by one. All these prob-
lems hinder its applications, especially for precision mea-
surement. Hence, a technique that is resistant to non-
sinusoidal waveforms would be a significant development
in 3D shape measurement.

In this letter, we present the linear sinusoidal phase-
shifting method (LSPS), a novel coding method that
combines the advantages of nonlinear waveform error re-
sistance and the high resolution attained by the sinu-
soidal phase-shifting methods. Compared with the tradi-
tional phase-shifting method, the proposed method is far
less sensitive to the projector nonlinear gamma. The idea
originated from the following observations. Firstly, in a
2π phase period, the number of non-sinusoidal waveforms
is the same as the number of the phase steps. Secondly,
a few zero-error points occur in the 2π phase period.
Finally, although the non-sinusoidal waveforms have pe-
riodicity, the distances between each cycle and the error
amplitude are different. The last observation indicates
that it is difficult to completely eliminate the phase error
using the passively compensated algorithms[8−10], which
are based on the same periodicity assumption. The first
two observations imply that the error can be completely
eliminated if the distance between each cycle is reduced
to zero, and if the zero phase error pixels are selected.
If this hypothesis is true, then a novel and robust phase
coding method can be developed without nonlinear pro-
jector gamma calibration. Experiments are presented to
verify the performance of the proposed technique.

Sinusoidal phase-shifting methods are widely used in
optical metrology because of their measurement accu-
racy. In this letter, a four-step phase-shifting algorithm,
which requires four phase-shifted images, is used. The
intensities of the four images with a phase shift of π/2
are

Ip
j (x, y) = I ′(x, y) + I ′′(x, y) cos[ϕ(x, y) + j × π/2],

j = 0, 1, 2, 3. (1)
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where Ip
j (x, y) is the intensity value of pixel (x, y) in the

jth fringe image, I ′(x, y) is the average intensity, I ′′(x, y)
is the intensity modulation, and ϕ(x, y) is the phase to
be datermined. Upon solving these four equations, the
following phase can be obtained as

ϕ(x, y) = arctan[(I1 − I3)/(I0 − I2)]. (2)

Equation (2) provides the wrapped phase with 2π dis-
continuities. A spatial phase-unwrapping algorithm can
be applied to obtain the continuous phase[13], which can
be used to retrieve 3D coordinates[14].

Phase errors were analyzed in one period using the
temporal-phase (TP) method, which is not necessary
in measurement, in order to study their characteristics.
Firstly, the computer-generated ideal sinusoidal patterns
were sent to a projector. The fringe image was then
moved, leaving one pixel in each projection plane. After
T times of shifting (T is the number of points sampled),
the intensities of the T grating images are obtained as

Ip
i (x, y) = Ip(x + i, y), i = 1, 2, · · · , T. (3)

These sinusoidal patterns were captured by a camera
with an intensity of Ic

i (x, y):

Ic
i (x, y) = I ′(x, y) + I ′′(x, y) cos[ϕc

i (x, y)],
i = 1, 2, · · · , T. (4)

Based on the four-step phase-shifting algorithm, the
phase ϕc

i (x, y) of each pixel can be calculated as follows.
ϕc

i (x, y) is the modulo 2π phase at each pixel with value
ranging from 0 to 2π:

ϕc
i (x, y) = arctan

[
Ic
i+1×T

4
(x, y)− Ic

i+3×T
4
(x, y)

Ic
i+0×T

4
(x, y)− Ic

i+2×T
4
(x, y)

]
,

i = 1, 2, · · · , T. (5)

If (i + j × T
4 ) > T, i = 1, 2, · · · , T, j = 0, 1, · · · , 3,

then (i + j × T
4 ) = (i + j × T

4 )− T .
Based on the TP method, one circle phase ϕc

i (x, y)
of each pixel was calculated by Eq. (5), and the phase
error ∆ϕc

i (x, y), which is the difference between the
current and the ideal phases, was obtained. The ideal
phase is a linear one ranging from 0 to 2π; thus, the
slope of the line ranging from 0 to 2π is the phase error
∆ϕc

i (x, y) = ϕc
i (x, y) − kx, where k = 2π/T . The red

lines in Fig. 1 denote the phase errors of the 500th row
on 20 different pixels of the image. The phase errors
with fringe pitches of 20 and 8 have root-mean-square
(RMS) values of 0.076 and 0.021 radians, respectively.

Figure 1 clearly shows the following. Firstly, four sinu-
soidal phase error cycles exist in each wrapped phase (0–
2π), and the number of phase error cycles is the same as
the number of steps of the phase-shifting algorithm. Sec-
ondly, nonlinear errors in a wrapped phase (0–2π) have
zero error points at i × T/8 (i = 1, 2, · · · , 8). Thirdly,
the magnitudes and spaces of the phase errors decrease
continuously with the decrease in fringe pitch. Lastly, the
projector nonlinear gamma changes over pixels, resulting
in a different phase error that causes the non-sinusoidal
waveform to be incompletely compensated by positively

Fig. 1. (Color online) Comparison between (a) the traditional
and (b) the proposed method. Phase error (red lines) for tra-
ditional fringe patterns and phase error (blue line) with the
proposed fringe pattern.

compensated algorithms[8−10].
The above observations can be explained in theory.

The first phenomenon is caused by the principle of the
four-step phase-shifting algorithm. The phase values of
each pixel are determined by a four-pixel gray value with
an interval T/4, as shown in Eq. (5). This means that
one circle phase is divided into four equal parts: (0, T/4],
(T/4, 2T/4], (2T/4, 3T/4], and (3T/4, T ]. Each part is
computed using the same gray value with interval T/4,
as shown in Eq. (5). Thus, there are four phase error cir-
cles in one wrapped phase. The phase is computed with
the arctangent trigonometric function shown in Eq. (5).
The arctangent function has convergent properties at
±π/2 positions, where the computed phase value ϕc

i (x, y)
slightly changes even if there are dramatic changes in the

domain, as
[

Ic
i+1×T

4
(x,y)−Ic

i+3×T
4

(x,y)

Ic
i+0×T

4
(x,y)−Ic

i+2×T
4

(x,y)

]
. Hence, this con-

vergence characteristic significantly reduces the nonlin-
ear response of the projector gamma at points i × T/8
(i = 1, 2, · · · , 8).

The first three points mentioned above show that if the
number of pixels in T/4 is reduced to 1, that is a wrapped
phase (0–2π) period of four pixels T = 4, then the phase
error spaces are reduced to 1, which is the only four-phase
error value in a wrapped phase. In addition, if zero error
points are also selected to compute the phase, then the
phase error is theoretically and completely eliminated.
Figure 2 shows the cross-sections and the gray image of
the four patterns. Their intensities can be written as

Ip(x, y) = I ′(x, y) + I ′′(x, y) cos[(x× 2π)/4 + j × π/2],
j = 0, 1, 2, 3. (6)

Equation (6) indicates that only the intensity values of
0, 255/2, and 255 are used for their novelty and sim-
ple, structured light pattern. The phase was computed
using a traditional four-step phase-shifting algorithm –
the LSPS algorithm. The phase error with our fringe
pattern, computed using the TP method, is 0; this is
represented as the blue lines in Fig. 1.

The proposed fringe pattern has a triangular pattern;
however, the proposed method differs from the trian-
gular phase-shifting method[4−6], which uses triangular
patterns coded with gray levels for the projection. Cal-
culating the captured triangular patterns obtains a trian-
gular intensity ratio distribution. Removing the triangu-
lar shape of the intensity ratio through each full pattern
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Fig. 2. Proposed linear sinusoidal phase-shifted fringe pat-
tern. (a) Gray image of the proposed pattern; (b) cross-
section of the proposed fringe pattern.

pitch generates a wrapped intensity ratio distribution.
These methods have a simple computation for the in-
tensity ratio and rapid calculation speed. However, they
are highly sensitive to noise, nonlinearities, and projector
and camera defocus[6]. Our proposed method and the tri-
angular pattern method differ in three ways. Firstly, our
linear sinusoidal curve is consistent with the sine func-
tion, whereas the triangular method is not. Secondly,
phase calculation is different, with our method being
based on the calculation of an arctangent function of
the phase, whereas the triangular method computes the
intensity ratio to obtain the phase. Thirdly, our method
is immune to the non-sinusoidal phase error, whereas
the measurement accuracy of the triangular method is
limited by the gamma nonlinearity[6].

Two traditional sinusoidal fringes are tested to com-
pare the performance of the proposed approach and the
traditional phase-shifting fringe methods. The phase
error is calculated using the TP method, as previously
specified. The phase error corresponding to the real
wrapped phase value is plotted in Fig. 1. The phase
error with traditional sinusoidal fringe phase-shifting
method is very clear, as shown by the red lines in Fig.
1, although the four cycles of phase errors at each point
are the same. However, the phase error between the two
points is different; the phase error with the proposed
LSPS algorithm is zero and is completely eliminated, as
shown by the blue lines in Fig. 1.

In practice, the calculated phase value is affected by
the nonlinear gamma curve, object independent irra-
diance function, gray interpolation, and image noise,
among others[2]. This causes the different values for the
magnitudes and spaces of the four periodic phase er-
rors that were calculated using the spatial phase method
(Fig. 3). To further verify the LSPS method, a 3D shape
measurement system was built comprising a DMD pro-
jector (NP50+, NEC, Japan) and a USB CCD camera
(OK AM1310, Jiahengzhongzi, China) with a Computar
1614-MP lens F/1.4 with f of 16 mm. The system
measure area is about 100 × 100 (mm) and the cam-
era resolution is 1 280 × 1 024 pixels. The digital video
projector shows the proposed four phase-shifted linear
sinusoidal images with a phase shift of δ1 = 0◦, δ2 = 90◦,
δ3 = 180◦, and δ4 = 270◦, and the CCD camera captures
the reflected fringe images with a white flat board. In
this verification, traditional sinusoidal fringes with 20
and 8 pitches are used as examples to create the phase
error. Figures 3(a) and (b) show the plot of the 500th
row with respect to the wrapped phase. The red lines

in Figs. 3(a) and (b) illustrate the phase error with tra-
ditional sinusoidal fringes, while the blue lines show the
phase error with the proposed method. Figures. 3(c)–(e)
show the 3D reconstruction results with the traditional
and the proposed methods. The figure shows a part of
the white flat board, which is about 80× 80 (mm). The
phase errors with fringe pitches of 20 and 8 have RMS
values of approximately 0.078 and 0.022 radians, respec-
tively. In comparison, the phase error with the proposed
fringe pattern is reduced to an RMS value of 0.001 radi-
ans. The phase error is almost eliminated or completely
minimized, showing that the proposed linear sinusoidal
gray patterns play a significant role in weakening the
nonlinearity of the projector gamma.

In addition, a plaster tooth model was measured, and
no filter algorithm was used to smoothen the 3D geome-
try. The part of the plaster tooth model with a volume
of about 40 × 25 × 10 (mm) is measured and recon-
structed. Figure 4 shows the reconstructed 3D model
with the traditional and the LSPS methods. Figure 4(a)
shows the projected fringe image, while Figs. 4(b) and
(c) present the results of the reconstruction with tradi-
tional sinusoidal fringe pitches of 20 and 8. Figure 4(d)
shows the result of the reconstruction with the LSPS
method. The reconstructed 3D geometric surface with
the proposed method is smoother and has better visual

Fig. 3. (Color online) 3D measurement result of the flat board
with the traditional and the proposed methods. (a)–(b) 500th
row of the phase error with traditional sinusoidal fringes and
the proposed fringe; (c)–(d) 3D reconstruction with tradi-
tional sinusoidal fringe pitches of 20 and 8; (e) 3D recon-
struction with the proposed method.

Fig. 4. 3D measurement result of the complex plaster tooth
model with the traditional and the proposed methods; (a)–
(b) source image and phase-shifted fringe image for the plas-
ter model; (c)–(d) 3D geometry with traditional sinusoidal
fringe pitches of 20 and 8; (e) 3D geometry with the proposed
method.
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effects, confirming that the proposed LSPS method can
successfully eliminate or minimize non-sinusoidal wave-
forms and significantly improve measurement accuracy.

As stated above, the number of phase error cycles in
the wrapped phase (0–2π) is the same as the number of
the steps of the phase-shifting algorithm. This indicates
that the pitch of one phase error cycle is equal to 1/n
of the fringe pattern (n is the step of the phase-shifting
algorithm). The number of phase errors changed to 1
when the pitch of one phase error cycle is decreased to
1; zero error pixels are then selected for computation,
and the phase errors are eliminated. Thus, the proposed
method is not only suitable for four patterns, but also
for different numbers (the number n) of the pattern in
principle.

The proposed phase-shifting fringe pattern has four
pixels in one period. The projected fringe patterns seem
to be very thin when measuring large objects. Thus,
it is important to know how to capture striped images
without being affected by the defocus and pixel splitting
of the camera, and by the resolution difference between
the camera and the projector. We used laser to certify
the captured patterns in focus and found that the two
other factors mainly cause the pixel gray interpolation.
An additional laser line and the camera center line form
a triangle structure, which can be used to detect the
appropriate measurement distance.

The proposed phase-shifting method has the following
advantages. Firstly, the LSPS algorithm is far less sensi-
tive to the nonlinear gamma of the projector because of
its novel principle, and the convergent properties of the
arctangent trigonometric function are used. Secondly, in
theory, the error caused by the nonlinear gamma of a dig-
ital video projector can be almost completely eliminated
while still maintaining the advantage of a phase-shifting-
based approach, which makes it an accurate tool for 3D
shape measurement system. Thirdly, the proposed LSPS
algorithm is simple, using linear sinusoidal patterns with
only three kinds of gray, which have clear differences in
tonal value.

In conclusion, we present a novel and robust struc-
tured light, linear sinusoidal phase-shifting method for
3D shape measurement. Compared with traditional sinu-
soidal phase-shifting methods, the proposed method has
the advantages of non-sinusoidal waveform error resis-
tance since it eliminates the errors from the principle of
generation, instead of calibrating the nonlinear response
of the projector. In general, the proposed algorithm
solves the issues encountered in 3D profile measurement
system using a digital projector.
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Program of China (No. 2009BAI81B02) and the Doctoral
Foundation of Ministry of Education (No. 20070287055).
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